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SUMMARY 
A method of modelling the contribution of finite-size organized streams and fluid structures to the processes of 
turbulent transport is presented for the example of developed turbulent pipe flow. The method is applied to 
construct the turbulent length (L) and eddy viscosity coefficient (vt) employed to compute the average 
characteristics of the flow. The average effects of action of these organized fluid structures and streams are 
modelled as the h a l  results of discrete displacements of certain model turbulent signals between nodes associated 
in pairs as well as the results of effective discrete displacements of these pairs. The displacement of information 
about the organization of two nodes into a pair identifies the displacement of the pair. These nodes constitute a 
network whose parameters have been established a priori analytically by considering a sequence of model 
turbulent lengths scaled with their distance to the wall. The model turbulent signals are evaluated at respective 
discrete nodes with the help of a certain finite difference turbulence model closed by L and vt and realized on an 
appropriate numerical grid. The non-uniform grid spacing has been related unambiguously in a rational way to the 
sequence of model turbulent lengths. Results elucidating specific features of this discrete modelling, particularly 
its differences from the continuous approach, are presented. Good agreement of the results with available 
experimental data is demonstrated. The average characteristics of the flow structure predicted for a wide range of 
Reynolds number (Re) are unique or bifurcated for particular Re intervals. The latter case suggests the occmnce 
of switching from one type of flow structure organization to another with the ambient conditions unchanged. 
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1. INTRODUCTION 

A number of available experimental observations reveal that organized fluid structures and streams of 
finite size and range of action contribute significantly to the effects of transport phenomena in turbulent 
flows. The fully developed turbulent regime of axisymmetric pipe flow can be a convenient example 
for designing an approach to represent this contribution in simulation methods for turbulent flows. 
Organized fluid structures and streams contribute significantly to the effects of transport phenomena in 
this case' and long-time average characteristics of the turbulent motion remain practically unchanged 
when observed within consecutive flow cross-sections. The sequential character of the so-called 
bursting phenomenon dominating this flow structure' enables us to study the flow structure 
organization by considering patterns C(r, 4) obtained within a cross-section x of the flow by averaging 
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sufficiently long series of patterns Cdr, 4) representing effects of organized motions which are 
observed consecutively in this cross-section (here x, r and 4 are cylindrical co-ordinates, with x 
coinciding with the pipe axis). On the other hand, the axisymmetry of the flow makes it sufficient to 
consider series of intervals S(Y)  that are a one-dimensional representation of these averaged patterns 
C(r, 4) in the direction normal to the wall (here Y denotes the distance to the wall). The intervals that 
are elements of these series correspond to the average sizes of turbulent eddies observed in projection 
onto the direction Y normal to the wall. These intervals will have been further modelled by appropriate 
length elements that are necessary to express the model turbulent length L. The turbulent length L and 
eddy viscosity coefficient vt are model characteristics employed in a number of turbulent flow 
simulation methods to predict the effects of transport processes; both L and vt will attract our attention 
here. 

For the reasons presented above, the one-dimensional representation of the effects resulting from the 
flow structure organization may be studied by considering a system consisting of a finite amount of 
fluid, part of which is involved in the organized motion whose organization has been accomplished. 
Since the organized streams and fluid structures are recognizable within finite regions of the space- 
time domain of the flow, one assumes that the average effect of their action at a particular location may 
be regarded as the final result of displacements of certain characteristic turbulent disturbances from 
other locations within the flow domain. Accordingly, the average effects of transport phenomena which 
are related to the action of these organized motions may be referred to a discrete node as the final result 
of displacements of certain turbulent signals from other nodes within the flow domain. In the example 
considered here, the signals are represented by non-dimensional combinations of the Reynolds average 
flow characteristics, their values and relationships between them; the characteristics are evaluated by 
using an appropriate turbulence model closed by L and vP 

Therefore either the eddy viscosity coefficient vAY) or the turbulent length L(Y)  at a reference point 
Y= Y, may be expressed as values resulting from the contribution of the turbulent signals 
accomplished at points different from Y,. In the modelling, the length L, as well as the expression for 
vt, is employed to represent the final average effects resulting from organized streams and fluid 
structures whose size and range of action are finite, i.e. not infinitesimal. Accordingly, we propose to 
study these effects with the help of discrete nodes associated in pairs pertaining to a certain predictable 
network of pairs. In accordance with the attached eddy hypothesis' we may assume that the turbulent 
eddies effectively represented by pairs of nodes are scaled with their distance to the wall. The spacing S 
between the nodes of a pair is scaled with the distance Y from the lower node of the pair to the wall: 
S= XI: The scaling factor x is independent of the distance Y with reference to which the length S is 
determined under the same ambient conditions (here the Reynolds number characterizes the dynamical 
conditions and the smooth pipe of circular cross-section determines the flow geometry). Thus the pair 
of nodes is identified with the length element S at position Z one considers also its reach Y+ S. It is 
known from the available literature that when considering the direction normal to the wall we may 
distinguish classes of ordered motions directed wallwards or outwards which are associated with the 
bursting phenomenon3 and correlated with them a class of organized motions resulting in a structure of 
turbulent flow which is referred to the whole flow cross-section.' Therefore two classes of the length 
element S have been employed to construct L (Figure 1). 

Let us consider the class of displaceable length elements denoted here by s. The length s is identified 
by the pair of discrete nodes only whence division of s is without reason. Moreover, s has been 
assumed to be proportional to the distance Y, from the lower node of the pair to the wall (s o< Y,) so that 
the inequality s # 0 requires Y, 3 s. By virtue of the assumption made previously about studying the 
final results of displacements of certain turbulent signals, only the extreme positions Y, = s and 
Ya = Y, = s / x  of s are admitted. Eventually, each element s can be displaced between the node with co- 
ordinate Y, with respect to which the length s of the element s is determined, s=xY,, and the node 
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Figure 1. Fixed pair of nodes S and displaceable pair of nodes s 

whose distance to the wall is equal to s. Accordingly, the turbulent signal can be displaced between the 
nodes of the pair s as well as owing to the effective displacement of the pair between its extreme 
positions YA and YAt =s (see Figure 1). The effective displacement may be explained by considering 
information about the association of two nodes (A, B) identifying the length s. That this information 
portion accomplished with reference to node A has been displaced to a certain node A' is recognized 
after the association of two nodes (A', B') into the pair identifying the length element equal to s. 
Actually, the nodes are not displaced. Parameters determining the k i t e  sequence of length elements 
(Zi} whose position { y i }  are fixed are used in this model as characteristics of the length scale referred to 
the whole flow cross-section. Therefore these parameters have been used to establish the largest value 
L, of the model length L. For each i = 1, . . . , M we define 

zi = xYj ,  yi+l = Yj + zr, XI = Zi/ &+i 'c = yM+I.  (1) 

The capitals Z= z/rw and Y =y/rw denote non-dimensional values for all subscripts and r,,, is the pipe 
radius. Definitions (1) imply 

21 = X / U +  yc = (zl/21)(x/xl)M-1. (2) 

The scaling factor x is regarded as a quantitative characteristic of the average one-dimensional 
pattern of the flow structure organized as the final result of forming the developed turbulent regime 
under the conditions considered, The self-sustaining regime of the flow structure organization that has 
been accomplished in the system may be regarded, in accordance with our previous assumption, as one 
consisting of a finite amount of fluid. Therefore x specifies the average level of organization of 
developed turbulent motion in the system that corresponds to the level of disorder in the non- 
organized part of the fluid, which may be interpretated as the result of the most effective disturbing 
action of organized streams and structures on the surrounding non-organized fluid. This corresponds to 
the reference case for which the reach Y,,, = Yc of the largest length element ZM coincides with the 
pipe radius. 

In this paper the parametrization of the discrete displacement model (DDM; Section 2) and the 
governing equations of the turbulence model (Section 3) are sketched briefly; the relevant theoretical 
considerations have been postponed to the Appendix. Further, attention is focused on the numerical 
realization of the DDM (Section 4), results of the computations performed are discussed and thus 
specific features of the DDM modelling are elucidated (Section 5).  

2. PARAMETRIZATION OF DISCRETE DISPLACEMENT MODEL 

The derivation of the reference parameters as well as of the expression for the model length L has been 
reported previ~usly?,~ Therefore we present below only a very brief summary of the results necessary 
to understand further considerations. Values corresponding to the reference case are indicated by the 
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subscript r, e.g. Y,= Ycr= 1. We assume that zlr = v/ut, whence we have Z,,  = l/r,,,,+; here 
r ,  = rwu,/v and ut and v denote the friction velocity and coefficient of kinematic molecular viscosity 
respectively. For the Reynolds number (Re) interval in which the model is applicable, we assume that 
M=M, and Zl = Z,,, whereas x =x(Re) and Yc= Yc(Re); here Re= Uor,lv and UO denotes the 
average streamwise velocity U along the pipe axis. The largest value of the turbulent length, 
L, = L(Y,) = l(Yc)/rw = l c / rw ,  is equal to the value q, = q(Y,) of a certain differentiable function 
q ( Y )  on Y > 0 yielded by the equation 

whence 

Equation (3) has been assumed by analogy with the following equation that has been constructed by 
considering the sequence {Zi }  shown in Figure 2: 

zB.i mB,i/A& 

zA,i z A . i / 6  ' 
- 

where 

We have also assumed that q(Yo) = Z A , l ,  where Yo is the lower position of the displaceable length 
element qo such that qo = Z1;  consequently Yo = qo. L, = q, is a model length scak referred to the 
whole flow cross-section which has the same share in L(Y) that the length element ZM has in the 
sequence (Zi} .  L, corresponds to ZM if the same relationships between each of the two extreme values 
of q(Y) = qE = q(YE), with subscript E = 0 or E = c, and the respective extreme position YA = Yl or 
YA = YM of the length element Z,  or ZM are satisfied (see below and Figure 3). This requires also 
considering the series {Zo,}, i = 1, . . . , M, constructed by analogy with {ZJ,  with the first element Zol 
coinciding with the admissible displacement of the element qo: 

Figure 2. Construction of sequence (Z,) of fixed length elements 
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Figure 3. Illustration of relationship between qo, qe and (ZJ. The top diagram elucidates the general relationships (8) and (9), 
while the two lower diagrams correspond to the two extreme cases (10) and (11) 

For this purpose we define co-ordinates YB and YF according to 

q E I Y E  = y,4/yB* 

The relation 

being satisfied for one extreme case, i.e. q E  = qo = YE = Yo, YA = Yl and general expression (9) for YF, 
suggests assuming the corresponding relation for the other extreme case, i.e. q E = q c ,  YE= Y, and 
Y, = YM: 

yF/y&2 = yZoM+l/yF* (1 1) 

rwr+ = ( q c , / X ~ , ) 2 ( 1 / X , ) ( ~ ~ - 3 ) ' 2 .  (12) 

Then equations (7H9) and (1 1) and definitions (1) yield for the reference case (Y, = Y,= 1) 

Relationships (2), (4) and (12) yield the equation 



110 W. KOZLOWSIU 

which provides a correlation between M and x only that is satisfied in the reference case. This enables 
us to use the following criterion 

-Xr lOg(Xr) = %(-XW) log[~(M)Il* (14) 

formulated in accordance with the specification of the reference flow structure by x (see Section 1). 
(Theoretical considerations involved in formulating criterion (14) have been postponed to the 
Appendix.) Then only one pair of reference values, M, = 23 and x, = 0.368012, is found with the help 
of equations (1 3) and (1 4), whence from equations (4), (1 2 )  and (2)  we have L,  = qcr = 0.109948 and 
rw+=3666.1. The model turbulent length is expressed in the form L=LN[l+a(Y)], with LN 
characterizing the flow core, a(Y)  modelling effects that are strongest within the region close to the 
wall and LN(Y,) = L, = qc. Here 

where 

and YT is defined as 

Y < YT; LN(Y)/(Y) = Zi/yi+l = X I  (17) 

for i = 1,. . . ,M and LN(Y=O)=O. Equation (16) shows that LB(Y) results from the discrete 
displacement of the turbulent signal (vt(Yx)/v,(Y,)) from the node with co-ordinate Y,= Y Y,/Yc at 
which the signal has been accomplished to the reference node Y (here Y, is the co-ordinate at which vt 
has its supremum). 

Defining the factor F,(Y) by the relation 

we have, in accordance with equation (1 7), for each Y E  [0, Y,] 

The factor FL has been constructed to represent effects resulting from classes of ordered motions 
directed wallwards or outwards and associated with the bursting phenomenon (hereafter they are 
indicated by subscripts s and e respectively). Thus FL is determined at a reference node Y= Y, as the 
value resulting from the contributions of two signals Qe and Q, displaced discretely by the respective 
length elements s, and s, from the two sides of Y,: 

FL(Y) = Q L Y Z ~ )  - Qe<Yoe)* (20) 

Here Q, is displaced from a region where the characteristic scales are smaller than the scales 
originating close to the reference node, so that Q, contributes to FL with negative sign. Thus each of 
the signals Q E {Qe, Qs)  is displaced by the respective length element s E {s,, s,) from one end to the 
other and owing to the effective displacement of s from one extreme position to the other (see Figure 
4). The situation of two nodes ( Y / 2 , 2 Y )  from which the signals are displaced directly to the reference 
node6 and the assumptions concerning displaceable length elements yield Y,, = Y / 2  and Yo, = 2Y, 
whence, since generally Yo=s, Y1= s / x  and YZ =s/xl, we have Yo, = Y x 1 / 2  and Yh = 2 Y / x 1 .  
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Figure 4. Scheme of effective discrete displacements of information portions within wall region 

3. GOVERNING EQUATIONS OF TURBULENCE MODEL 
The model length L = l / r w  constructed has been employed to close the turbulence model based on the 
transport equations for mean aubulent energy (k) and mean square of normal turbulent pulsations 
((g)); hence this is called the kv-L model. The equations whose finite difference analogues specify the 
kv-L model constitute a modified version of the model reported previously6 In the equations of the h- 
L model presented below, k = (u, a u,)/2 with summation after repeated indices, u, (i = 1 ,  2, 3) are the 
components of the pulsatory motion, p is the mean pressure, p is the fluid density and E is the turbulent 
energy dissipation rate; other notation has been explained pmiously. The values Y, and q,=L,  
necessary to calculate L are computed using equations (2) and (4) respectively. 

with the boundary conditions 

- 0, r = r,: U = k = (2) = 0. dU dk d($) 
dr-dr- dr 

r = O :  -- 

Here L = r,  L,  where L is given by equations (4), (1 5) ,  (1 6), (19) and (20) with 

Then QJ = 0 for Y, > min( Y,, 1).  In the case where Y, c 1, 1 is taken as I(Y) = I(Y,) for YE [Yo 11. If 
Y, obeys the condition Y, > 1 ,  1 (Y < 1) pertains to the equations of the kv-L model (then 
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L(Y = 1) FZ L, with the accuracy required in these computations). The factor FN modifying the eddy 
viscosity coefficient is expressed as6 

FN(y) =fN(Y)/ suP[fN(Y)I, f N ( Y )  = ( J ( S ) / U , ) l Y , Z  + ((S,/yX(S))i, + (2J(.z)/ql,Y. 
Y 

(24) 

The coefficients varying with the Reynolds number are 

where the constants c1 = 0.293047 % 0.293, c2 = - 0.25, c3 = 1, c4 = 0.5, c5 = 1.25, c6 = 0.75 and 
c7 = - 0.5 have been calculated at r,+ = r,,,,.+ with the help of a few general assumptions inherent in 
the model. No experimental values have entered the calculation of the first constant cl. 

4. REALIZATION OF DISCRETE DISPLACEMENT MODEL 

The model is realized on a numerical grid such that each node of the grid has the co-ordinate 5 = Y,, 
i.e. the same as the reference node Y, of the network of the respective discrete co-ordinate systems in 
which the displacements result in the factor FL(Y,). Other nodes of the discrete co-ordinate system 
network have different co-ordinates from the grid nodes (see Figure 4). Thus the kv-L turbulence 
model is only a source of information employed by using a certain formal procedure to accomplish 
turbulent signals at non-reference nodes of the discrete system of co-ordinates (DSC). The specific 
features of equation (21) do not determine the properties of the discrete displacement model (DDM) 
presented in previous sections; they are an example of a tool utilized to realize the DDM. On the other 
hand, the spacing peculiar to each pair of associated nodes is related to the reference node co-ordinate 
Y, of the respective DSC network; Y, is identified with the corresponding co-ordinate 5 of the 
numerical grid nodej (see Figure 4). This relation is controlled by x(Re) only, which is calculated by 
using values determined at nodes of the numerical grid. The necessity for logical consistency between 
assumptions of the DDM and its computational realization parametrized by x demands relating the 
spacings (hi} of the numerical grid nodes to the sequence of length elements {Zi). This has been done 
by relating the parameters specifying the geometrical progression (h,} growing from the wall, with 
o = h,-l/hj for eachj = 2, . . . , N - 1, to the parameters specifying (&}. The relation is to be done 
before computations are performed using the kv-L model. This is possible only in the reference case 
Y, = U,, = 1 when x = zr is given. Results of computations performed using this grid for other Re may 
be analysed by relating them to the respective values obtained for the reference case. 

With the aim of relating the {hi}, j = 1, . . . , N - 1 (with the smallest mesh for j = N  - 1 at 
the wall), to the ( Z J r ,  one expands the sequence {Zi}r into the series ( s ~ }  obeying the 
relation s,/s,+] = (Zi/Zi+l)r so that there is an integer J >  1 for which sndtl =Z, and 
s , , ~ + ~  = (ZM)r = ZMr. We define a mean length element in the wall region as 

n=l 

and require the relation 
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to be obeyed, which defines the mean grid mesh h, corresponding to s, By virtue of this relation, the 
inequality h, < Jsw implies s, < h, In accordance with the assumption just presented (equations (26) 
and (27)), we require the relation 

to be obeyed and the inequality s l / &  Q hN-] to be satisfied, with the integer K corresponding to a 
possibly small difference value hN-l - sI /xr  2 0; hence K = int(X;* + 1) = 8 and the hct ion ‘int’ 
returns the largest integer less than the argument. The correspondence just presented is consistent with 
the requirement of obeying the relation 

_ -  sw s1 -- 
hw hN-I ’ 

which results in the equality J =  K. By Virtue of equation (4) expressing the correlation between 
qc = L, and x1 as well as the relationship 

obeyed for all pairs (j, n) such that 

with 5 = + hi, we require the left side of the inequality 

to be as close as possible to the right side. Here 

after all the consecutive pairs (j, n) referred to equation (31) and P(Y) is yielded by the equation 
assumed by analogy to equation (3): 

Being given hN-] after equation (28), we can find the ratio w = w,(N,) corresponding to an assumed 
number N, of grid nodes. Then the pair (I?,, a,) fits the value hH-l accurately, although the condition 
imposed by equation (32), with regard for equations (33) and (34), on the value of the largest grid mesh 
hl may not be obeyed. Therefore the following selection has been performed to determine the pair 
(N, w )  correspondmg accurately both to hN-, and to hl obeying equation (32). We estimate an initial 
N, and determine the corresponding w,. Further, we determine the values 

CN = + h(hT/hN-- l ) /  ln(wa)t N, = int(cN), (35) 

with h ~ - ]  given by equation (28) and h; obtained after equation (32) when the equality is satisfied. If 
N, < N,, we take N, higher for the subsequent trial or lower in the reverse situation. As the set of values 
N, = N, has been established, we select from them the value N=N, that satisfies the condition 
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with the corresponding value w = 0,; here the curly brackets indicate a set of values. As a result, the 
parameters determining the geometrical progression constituted by the grid spacings (hi} have been 
related unambiguously to the parameters of the geometrical progression (Zi). Thus only one grid can 
be correlated with the { Z j }  under the conditions considered. The finite difference transport equations on 
this grid-not their differential ancestors equations (21) and (22)-pertain to the turbulence model 
designed and employed to deliver information necessary to accomplish the turbulent signals. The finite 
difference equations of the model have been obtained on the numerical grid with the help of the 
following finite difference analogues of the first and second derivatives of a quantity f at a nodej: 

(37) 
Sf &l -4-1 - S2f 2 k ? + 1  - (1 + w& +&11 

69 I= w(l + w)hj 
_ -  
Srl-  hi +hi_, ’ 

Application of these formulae in the pair has been suggested in Reference 7. The following boundary 
conditions correspondmg to equation (22) have been assumed: 

r = 0: q=l = ujZ2,  = $=2, ~ v ’ ) ~ = l  = (v2) i=2 ,  
(38) 

r = rw: v,=N = kj=N = ( v Z ) j = N  = 0. 

Finally, the effects of the turbulent motion associated with the action of organized fluid streams and 
structures have been modelled using only discrete co-ordinate systems. Each of these systems can have 
only one reference node to which turbulent signals can be displaced fiom other nodes of the same 
system (see Figure 4). We consider only discrete nodes of the discrete co-ordinate systems within the 
frame of the DDM; this model should not be considered as an approximation to a continuous one. 

Let us briefly sketch the general order in which computations are performed at subsequent iterations. 
The Reynolds number rw+ is the parameter at which iterations are performed. An iteration n - 1 
provides distributions of the characteristics {L ,  FN, U, k, (G), Nt = vr/urrw},,-, as well as the values 
(&l and ( x~ ) , , -~ ,  whence Y, entering the iteration n can be calculated using equation (2). This 
enables us to compute new distributions { U’, k‘, N: = Nh(FN),-l] using the finite difference analogue 
of equation (21); here Nu = vIA/u,rW and v ~ F N =  vP These in turn enable us to determine the co- 
ordinates Y, = qY,/ y,, where N:( Y,) = max[N:(I;)] for all j = 1,2, . . . , N. Subsequently, 
(LB), = [L&3], is computed via equation (16), which enables us to determine (YT), as the co- 
ordinate of the grid nodejl: Having (LB),, and (YT),,, we can compute (4,). and ( x l ) ,  using a system 
composed of equation (4) and the equality x1 = q&(YT)/YT in accordance with equations (15) and 
(1 7). The values obtained make it possible to compute (x) ,  using the first equation in (2), [FL( q)], with 
the help of equations (20) and (23), the coefficients ($i)n and ($A), from (25) and (LN),, and (L), after 
equations (16) and (19). These characteristics allow us to compute (v’),,, whence (FN), from equation 
(24); thus (NJ, and further { U, R}, can be obtained. Finally, the values computed enter the iteration at 
the subsequent step. 

5. RESULTS AND DISCUSSION 

The averaged characteristics of the flow structures resulting from the computations reveal patterns 
composed of unique or bifurcated solutions within particular Re intervals (see Figures 5-7). The 
ordinate Zm (in Figure 7) and the abscissa ReN in Figures 5-7 have been related to the respective 
values characterizing the reference case: 

R ~ N  = Wrw+/rw+)/ Mrw+,m/rw+,mJ- (39) 
Here ZM,m and Z,,,, denote the highest and lowest values of ZM respectively, while rW+,,,, = 1198 
(Re = 27,492) and rw+,m = 17,850 (Re = 559,650) denote the limits of the Reynolds number interval 

zm = (2, - zMr)/(zM,m - ZM.mn)r 
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Figure 5. Variation in model length scale L, with Reynolds number 
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Figure 6. Variation in d o  of average streamwise velocity within pipe cross-section to average streamwise velocity at pipe axis 
with Reynolds number 

considered. This Re interval has been found to be one within which significant subintervals with a 
unique solution occur (those ReN subintervals are larger than 0.01) and the predicted distributions of 
Reynolds average flow characteristics agree satisfactorily well with the experimental ones. 
Conventional comparison has shown very good agreement with the available experimental data for 
U (Figure 8), k, (9) and vt (Figure 9) and components of the kinetic turbulent energy budget within 
whole the pipe cross-section (Figure 10). 

This corroboration of the physical relevance of the DDM makes the patterns depicted in Figures 5-7 
worth further consideration. The fact that the DDM computations predict both the characteristics of 
velocity and flow structure organization (L, = A&-,,,, Z,=z,/rw, x )  has tempted us to construct a 
parameter related to the sequential nature of the bursting phenomenon. The average values that may be 
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Figure 7. Variation in largest length element with Reynolds number 

Figure 8. Profiles of average streamwise velocity compared with experimental data. The numbers identifying dues  of Re refer to 
Figures 8-10 (References 16-24 quoted in these figures are related only to the experimental data depicted) 
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Figure 9. Mean turbulent eneqy and mean square of normal component of turbulent pulsations (top) and eddy viscosity 
coefficient in core of pipe flow (bottom) compared with available experimental data 

employed to express such a parameter (denoted TARe)) make it possible to relate this value to the 
average period between bursts only and to consider it as an average characteristic of the turbulent flow 
regime which is independent of the co-ordinates: 

TB = A/ua* (40) 

where 

The non-dimensional characteristic 
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Figure 10. Budget of turbulent kinetic energy in pipe flow: D, diffusion; E, dissipation rate; G, generation. The components for 
the Wall region are s d e d  with u:/v (top), while the same components are Scaled with d/rw for the pipe flow core region 

(bonom) 

depicted in Figure 11 varies within the interval (2.9, 3.25). Surprisingly, the time between bursts non- 
dimensionalized like the predicted TB and found in an experimental way' for the pipe flow at 
Re = 67,500 varies h m  1.5 at the pipe axis to 4.5 at a location a distance Y = 0.22 fiom the wall. We 
do not assert that T, and the experimental characteristic are the same, although a certain 
correspondence between them cannot be excluded. The graphical representation of T, reveals these 
values as framed into a system of aligned parallelograms (see Figure 1 1). This form of grouping of the 
computed values of T, appears to be a specific feature of the DDM. One may observe that differences 
between values of Zm corresponding to the same ReN within ReN subintervals where results are not 
unique are not very evident (see Figure 7). Actually, these values are so close to each other that they 
appear to coincide at one location when the graph of Z, is drawn to scale as in Figure 7. The 
corresponding differences are most significant for L, (Figure 5) and T, (Figure 11). However, the 
differences for the flow velocity characteristics, e.g. the ratio of the average streamwise velocity within 
the pipe cross-section, UAy, to the average streamwise velocity at the pipe axis, Uo, are much smaller 
(see Figure 6). This latter graph seems to show that the velocity characteristic is not appropriate for 
considering features of results obtained using the DDM. 
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Figure 1 1. Variation in parameter T, considered here as apparent characteristic of changes in bursting fresumcy with Re 

The fact that ReN intervals with bifurcated results are present seems to denote the occurrence of 
switching from one quasi-stable regime of the flow structure organization to another with the ambient 
conditions unchanged (here the value of Re and the flow geometry specify the ambient conditions). Let 
us identify the switching hereafter as the change-over phenomenon. Prediction of this effect here can 
be attributed to the assumption of finite size and range of action of the organized flow structures and 
streams modelled within the frame of the DDM. Modelling of the discrete displacements in accordance 
with this assumption appears to be the direct cause of the bifurcated results. Actually, the continuous 
curves in patterns of L, (Figure 12) and Z m  (Figure 13) represent spurious results obtained without 
regard to the requirement of employing only nodes of the DSC network to model effects of the signal 
transmission. This spurious condition being at variance with the intrinsic feature of the DDM is obeyed 
while disregarding only the requirement that Y,,, and YT are to be co-ordinates of the numerical grid 
nodes. The curves indicated by the number 0 in Figures 12-15 have been obtained using the grid 
related to the (Zi) (see Section 4) but without regard to the condition that YTand Y, are to be the grid 
node co-ordinates. The difference between the DDM results and those obtained while disregarding the 
requirements of the DDM is particularly well illustrated by the pattern of the Zm distribution within 
the vicinity of the Reynolds number reference value (see Figure 14). There all the results are Unique 
and are represented by the continuous curves. The curve computed while satisfylng all the 
requirements of the DDM passes through the source of co-ordinates (ReN, Zm) in accordance with the 
assumptions of the DDM, whereas the spurious curves (denoted by the numbers 0-3) do not. Let us 
note herein that spurious curves corresponding to those indicated by the numbers 0-3 and representing 
the distribution of the streamwise velocity characteristic are fully covered by the respective DDM 
pattern (they are not shown in Figure 6 so as to preserve the clarity of this graph). The mutual situation 
of curves obtained using the consecutive numerical grids, whose density grows respectively with the 
numbers n = 0-3, might provide a basis for expectating that the curves would tend to coincidence at a 
curve which might correspond to a denser grid (see Figures 12 and 13 and their captions). However, 
this expectation is spurious, because there is no well-posed differential task here whose solution might 
be approximated by such a curve. These spurious curves are depicted here only for elucidating the 
features of the results obtained using the DDM. 
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Figure 12. Variation in largest value L, of model length compared with continuous curves denoting spurious results obtained 
while disregarding features of DDM. In Figures 12-1 5 the numbers n = 0-3 indicate such spurious curves obtained by using non- 
uniform numerical grids, for which the ratio of largest and smallest meshes (h,),/(hi)ln EZ: 2" for j = 1 or j = N, and i = 1 or i = N. 
respectively (here subscript r indicates the DDM grid, whereas n = 0 indicates curves obtained by using this grid while 

disregarding other features of the DDM; for other notation and explanation see Section 4) 

Figure 13. Variation in 
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largest length element Z, compared with spurious results as noted in caption to Figure 12 

The distribution of the value 

FLB = FL(yB) = Z [ F L ( Y ) I *  (43) 

corresponding to the largest positive share that transport effects modelled by FL have in L, appears to 
be specific also. Since the inequality Y, < YT appears to be satisfied for all the Reynolds numbers 
considered, FLB may be expressed as 
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Figure 14. Variation in 
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Figure 15. Evidence of existence of upper l i t  of Reynolds number for applicability of DDM assumptions concerning effects of 
turbulent flow structure. organization: (a) values obtained using DDM (see Section 5 for explanation); (b) continuous c w e s  

representing spurious results as noted in caption to Figure 12 

where ti is a series of lengths diminishing with the index i such that &+,/ti = for each (i, j) 
and = xYB. One can observe in Figure 15(a) that FLB is very close to J2 - 1 (silver section) for 
ReN c 0.45 and shows a strong departure for larger ReN. The patterns shown in Figure 15(b) reveal that 
this effect can be attributed to employing the grid related to the (Zi} for the computations. For this grid 
the departure of FLB from the silver section gows strongly for ReN > 0.6 (not shown). By virtue of the 
role which this grid has in the DDM, one may interpret the effect depicted m Figure 15 as evidence of 
the existence of an upper limit of ReN for applicability of the assumptions of the DDM. Passage 
through this limit would require a change in the assumptions concerning representation of the flow 
structure organization. This result obtained using the DDM suggests that the particular regime of the 
turbulent flow organization corresponding to the assumptions of the DDM and its spcification may be 
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sustained within a finite Re interval only. Finally, the change-over phenomenon predicted may 
correspond to the physical situation where organizing the finite structures in a system requires a h i t e  
interval of the time-space domain of the system where energy is supplied or extracted with the ambient 
conditions unchanged. A phenomenon resembling the one predicted here has been reported in 
Reference 8 as a result of theoretical and laboratory experimental investigations. There, certain rapid 
unexpected changes observed in geophysical flows have been suggested as possible examples of such 
processes in nature. 

6. CONCLUSIONS 

The method of discrete displacements proposed here enables us to predict the occurrence of switching 
from one quasi-stable regime of wall-bounded turbulent flow structure organization to another with the 
ambient conditions unchanged. This effect appears to be related to certain experimental findings 
(Section 5).  Employment of a rational, unambiguous relation of the numerical grid spacing with the 
sequence of model turbulence lengths for the computations makes possible the modelling of effects of 
transport processes which are attributed to the finite sue and range of action of the organized flow 
structures and streams. Hence the method appears to be a prospective tool for studying turbulent flows 
in which such effects are important (e.g. flow over rough or semipermeable walls). The example of 
DDM realization presented here is applicable within a finite range of Reynolds numbers (Section 5).  
The assumptions made for the expression of the model length L and eddy viscosity coefficient vt make 
these relationships applicable generally for modelling turbulent wall-bounded flows. Then certain 
coefficients in the turbulence model equations (2 1) require modification for computing flows through 
channels with non-circular cross-section.6 It may be useful considering employment of the factors FL 
and FN (Sections 2 and 3) to model transport effects within the wall region in turbulence simulation 
codes. Let us note finally that the idea of the DDM seems to be worth examination for modelling other 
complex processes, particularly where large-scale coherent motions from opposite directions 
contribute to average transport effects. 

MPENDIX 

The criterion expressed by equation (14) has been formulated by using the first aspect of the Brillouin 
principle, according to which the appearance of information about one part of a closed system within 
another part of the same system is possible only in the presence of an initial negative entropy defined 
as the measure of the initial departure of the system from the state with maximal information 
entropy?.1o The following premises provide a basis for employing the principle applicable to closed 
systems here for considering final effects of information transmission within them. Available 
observations of fluid structures becoming more and more complex within consecutive streamwise 
sections of a wall-bounded flow in the process of transition to turbulence"-I3 seem to be grounds for 
conjecture that the structures may result from a series of organized actions when the consecutive limit 
levels of that organization are a~hieved.'~ Accordingly, effects resulting from the self-organizing 
actions corresponding to that limit level may be represented by a certain average pattern that specifies a 
distinct stage of the tran~iti0n.l~ Then the developed turbulent regime may be considered as the last 
stage in that sequence,I4 which corresponds to the self-sustaining regime of the flow structure 
organization such that a one-dimensional representation of the organization may be studied for a closed 
model system consisting of a finite amount of fluid, part of which is involved in the organized motion 
whose organization has been accomplished (see Section 1 for further explanations). The sequence of 
organizing actions alluded to previously may be associated with the sequence of supplies of negative 
entropy to the flow in the course of the laminar-turbulent transition. Eventually one considers the 
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final average effects of information transmission within the closed model system where the 
organization is specified by the value of negative entropy supplied. This may be characterized by the 
finite increment of initial information entropy referred to the motion of the fluid that is not 
incorporated into the organized motion. The corresponding relationships that have resulted in the 
formulation of criterion (14) are considered below. 

The considerations related to the geometrical result Y 2 S of scaling the length S with its position Y 
(see Section 1) suggest solving the following formal task to fmd the aforementioned criterion. Within 
the frame of this task the interval extending from the wall to the position Y is searched for an imaginary 
sample particle (SP) by using a ruler whose length is equal to S. Then the geometrical probability of 
recognition of the particle SP is equal to the ratio of S to F P, = S/Y < 1. One may agree, within the 
frame of this formal task, to consider the ratio P, as the probability with which the length element S 
can affect the sample particle SP occurring within the interval [0, yl; that is the only sense in which S 
can be considered here as the active length element. The ratio S/Y=  P, may specify the organization 
corresponding to the reference case defined in Section 1 if the value P, is the characteristic referred to 
the whole flow cross-section. This is satisfied by P, = Zi/ yi = const. Furthermore, one may consider an 
imaginary experiment a that for each realization Ai results in the probability P(Ai) = 1/M for each 
i = 1, . . . , M in recognition that the particle SP occurs within the ith interval [0, yil. Assume that a 
certain realization B of an experiment f i  may consist in recognition of the SP affected by Zi within the 
interval [0, yi] for any one i. All other redit ions of f i  may result in recognition of the SP within any 
other interval [0, 51, with j = 1, . . . , M and j # i, where the SP is not affected by Zi. Therefore the 
probability of recognition of the SP affected by Zi within the interval [0, yi] for a given i is the 
probability of B under the condition that Ai took place: P(BIAi) = Zi/& = x .  This probability 
represents here the P, considered above. One may fUrther consider the mathematical expectation value 
of the conditional entropy (MEVCE) of f i  under the condition that a has taken place, H[Bla], i.e. the 
measure of uncertainty of recognizing the SP within an interval [0, yil. On the other hand, one may 
consider the MEVCE of f i  such that B cannot be one of its realizations; it is denoted here as B 6 f i  and 
respectively H[(fi: B 6 f i ) l ~ J  This latter case corresponds to the imaginary situation where Zi 
disappears or is deactivated. Accordingly, the difference 

GHlBlal= Wfi: B E fi)laI - W(B: B t i  filial (45) 

resulting from the appearance of B as one of the possible realizations of B may be regarded as the 
increment in the MEVCE of recognizing the SP within an interval [0, yi] which results from the 
appearance of Zi that is able to affect the SP within the interval [0, yi] .  With the help of the known 
relationships 

with {.Ii denoting the realizationj of an experiment denoted by 0, one may see that, by virtue of the 
independence of P(Ai) and P(B(Ai) on i, one has for each i 

GH[PJCl] = -P(BIA,) log P(BIA,). (47) 

Parameters of the sequence (Zi} which correspond to the maximal value of GH[Bla] indicate the case 
which can be realized by Nature in the largest number of ways and therefore is most likely to be 
0b~erved.l~ This corresponds to the reference case alluded to previously (see Section 1 for the 
definition). Accordingly, one requires that SH[fila] calculated after equation (47) with 
P(BIAi) = Zi/& = x by using the reference parameters M = M ,  and x = x r  achieves its maximum as 
expressed by equation (14). 
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